Likelihood models of somatic mutation and codon substitution in cancer genes.
نویسندگان
چکیده
The role of somatic mutation in cancer is well established and several genes have been identified that are frequent targets. This has enabled large-scale screening studies of the spectrum of somatic mutations in cancers of particular organs. Cancer gene mutation databases compile the results of many studies and can provide insight into the importance of specific amino acid sequences and functional domains in cancer, as well as elucidate aspects of the mutation process. Past studies of the spectrum of cancer mutations (in particular genes) have examined overall frequencies of mutation (at specific nucleotides) and of missense, nonsense, and silent substitution (at specific codons) both in the sequence as a whole and in a specific functional domain. Existing methods ignore features of the genetic code that allow some codons to mutate to missense, or stop, codons more readily than others (i.e., by one nucleotide change, vs. two or three). A new codon-based method to estimate the relative rate of substitution (fixation of a somatic mutation in a cancer cell lineage) of nonsense vs. missense mutations in different functional domains and in different tumor tissues is presented. Models that account for several potential influences on rates of somatic mutation and substitution in cancer progenitor cells and allow biases of mutation rates for particular dinucleotide sequences (CGs and dipyrimidines), transition vs. transversion bias, and variable rates of silent substitution across functional domains (useful in detecting investigator sampling bias) are considered. Likelihood-ratio tests are used to choose among models, using cancer gene mutation data. The method is applied to analyze published data on the spectrum of p53 mutations in cancers. A novel finding is that the ratio of the probability of nonsense to missense substitution is much lower in the DNA-binding and transactivation domains (ratios near 1) than in structural domains such as the linker, tetramerization (oligomerization), and proline-rich domains (ratios exceeding 100 in some tissues), implying that the specific amino acid sequence may be less critical in structural domains (e.g., amino acid changes less often lead to cancer). The transition vs. transversion bias and effect of CpG dinucleotides on mutation rates in p53 varied greatly across cancers of different organs, likely reflecting effects of different endogenous and exogenous factors influencing mutation in specific organs.
منابع مشابه
Investigation of Solvent Effect on CUA Codon Mutation: NMR Shielding Study
P53 is one of the gene that has important role in human cell cycle and in the human cancers too.Models of codon substitution make it possible to separate mutational biases in the DNA fromselective constraints on the protein, and offer a great advantage over amino acid models forunderstanding the evolutionary process of proteins and protein-coding DNA sequences. In thiswork, we investigated abou...
متن کاملMutational Signatures Are Critical for Proper Estimation of Purifying Selection Pressures in Cancer Somatic Mutation Data When Using the dN/dS Metric
Large cancer genome sequencing initiatives have led to the identification of cancer driver genes based on signals of positive selection in somatic mutation data. Additionally, the identification of purifying (negative) selection has the potential to identify essential genes that may be of therapeutic interest. The most widely used way of quantifying selection pressures in protein-coding genes i...
متن کاملStudy of pH influence on the stability of 175th codon of P53 genes by computational and modeling methods
P53 tumor suppressor gene, also known as “genome guardian” is mutated in more than half of allkind of cancers. In this study we have investigated the controls of environmental pH for P53 genemutation in point of specific sequence which is prone to mutagenesis. The most probable cancerousmutations occur as point mutations in exons 5-8 of P53 gene. The 175th codon of P53 is the thirdmost mutated ...
متن کاملMutation-selection models of codon substitution and their use to estimate selective strengths on codon usage.
Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we implement a few population genetics models of codon substitution that explicitly consider mutation bias ...
متن کاملK-ras Mutation in Colorectal Cancer, A Report from Southern Iran
There are very few studies about K-ras mutations in colorectal cancer (CRC) from developing countries such as Iran. It is therefore essential to conduct studies to learn about the molecular signature of such tumors, allowing the determination of an appropriate management plan. In the present study, we aimed to determine the frequency and types of K-ras mutations among patients with CRC in Iran....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 165 2 شماره
صفحات -
تاریخ انتشار 2003